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1. INTRODUCTION

Let {Ln} be a sequence oflinear operators on C[O, 1] into C[O, 1]. Evaluation
of the remainder

Rn(f, x) = j(x) - (Lnf)(x),

is useful in the investigation ofthe approximation properties ofthe operatorsLn-
For the Bernstein polynomials, this remainder has been thoroughly investi

gated. First, some asymptotic formulae were given by Voronovskaya and by
Bernstein (see [10], pp. 22-23) and later, the remainder was evaluated for
different classes offunctions by Popoviciu and by Lorentz (see [10], Th. 1.6.1
and Th. 1.6.2). More recently, O. Arama [3] gave a representation of this
remainder by means of divided differences. Using different methods of con
struction, L. Arama [1] and Stancu [14] obtained independently another
representation; but both restricted the functionsf(x) to be twice continuously
differentiable in [0,1]. Furthermore, L. and O. Arama [2], using L. Arama's
technique, obtained a similar representation of the remainder in the approxi
mation of the above type of functions by generalized Bernstein polynomials
(with some restrictions on the powers involved in the definition of these
polynomials). We shall give here a representation of the remainder in the
approximation of any continuous function on [0,1] by generalized Bernstein
polynomials. This representation will be expressed by means of divided
differences. We shall also estimate the order of approximation ofj(x) by these
operators.

Approximation operators resembling the Bernstein polynomials and
known as Bernstein power-series were introduced by Meyer-Konig and Zeller
[12]. Recently, Lupa~ and MUller [11] showed that the remainder for Bernstein
power-series has properties similar to those of the remainder for Bernstein
polynomials. Operators generalizing the Bernstein power-series and resembling
the generalized Bernstein polynomials were defined by Jakimovski and the
author [8]. (Recently they have been redefined by Feller [5].) Representations
and estimates of the remainders for these operators will also be provided.
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2. PRELIMINARIES

Let the sequence {Ai} (i;;. 0) satisfy

Define

00 12: A. = CfJ.

i=l ~

(2.1)

n

Pnm(x) = (_l)n-mAm+I·.·.·An :L XAi!W~m(Ai)' O<m<n=I,2, ...,
i=m

Pnn(x) = XAn,

where

n=O,I,2, ...,

Also, set

O<m<n= 1,2, ....

O<m<n= 1,2, ... ,

IXnn = 1, n=0,1,2, ... ,

and denote

qnm(x) = ~mpnm(X),
n

1 < m < n = ], 2, ....

The generalized Bernstein polynomials associated with the continuous
functionf(x) were defined by Hirschman ahd Widder (see [10], §2.8)as

n

Bn(f, x) = :L Pnm(X)f(lXnm),
m~O

O<x< I, n=O,I,2, .... (2.2)

A slight modification of [10], Th. 2.8.2, yields the following

THEOREM A. Letf(x) be continuous in [0,1].

(i) 1fAo= 0, then limn-->",BnCf,x) = f(x), uniformly in 0 < x < 1.
(ii) If Ao> 0, then limn-->",BnCf,x) = f(x) for every 0 < x < 1, uniformly in

any interval [0, IJ, 0 < 0 < 1. Moreover, since Bn(j,O) = Ofor all n;;. 0, it/ollows
that BnCf,O) --+ /(0) if and only if/CO) = O.

The generalized Bernstein power-series associated with a continuou.s
functionf(x) are defined as

'"Mm(f, x) = :L qnm(x)f({3nm),
n=m

O<x<l, m = 1,2, .... (2.3)

Since lirnX-->o+Mm(f,x) = f(O), it is convenient to define

Mm(f,O) = f(O), m = 1,2, .... (2,4)
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The following result is stated in [8J, Th. 4.1, and proved in [9J, Th. 2.3.
(See also [5J.)

THEOREM B. Let f(x) be continuous in [O,IJ. Then limm->co M,nCf,x) = f(x) ,
uniformly in°< x < I.

We shall make use of the following results (see [10J, p. 46, (10) and (11), and
p. 47, (4»:

n

then L Pnm(x) = 1,
m~O

0< m < n = 0, 1,2, ... ; I

I
O<x<I, n=0,1,2, ..., 1(2.5)

O<x< I, n=0,I,2,.... J

o<x< 1,Pnm(x);;:, 0,

"0 = 0,

and

if

Also, by [9J, (3.15),

o<x< 1,

and

n=m

co
L qnm(x) f3~~ = X

A1
,

n=m

m= 1,2, ..., }

°< x < 1, m = 1,2, ....

(2.6)

k;;:, 1.

Let" > °and define the divided differences of f(x) in the following way.
Let x o,XI' .. , be distinct points in the domain of definition of f(x); define

[";xo;fJ = f(xo),

[\. 'fJ - ["; xo, .. ·, Xk-I;f] - ["; Xl>'''' Xk;f]
II,XO'" .,xk , - A A '

Xo -Xk

For" = 1, these are the ordinary divided differences. We shall need the general
ones in order to describe the remainder for our operators in case "I # 1.
These divided differences are obtained from Popoviciu's general divided
differences, [13J, (22), by taking g/(x) = X/A, i = 0, 1,2, .... We call a function
f(x) convex, non-concave, polynomial, non-convex, or concave of order s if
the divided difference

["; Xo,· .. , Xs+I ;fJ,

is positive, non-negative, zero, non-positive, or negative, respectively, for all
(distinct) Xo, ••• , X S+ I in the domain of definition ofj.

3. REPRESENTATION OF THE REMAINDER

We establish, first, the following

THEOREM 1. Let "0 = 0, and let f(x) be continuous in [0,1]. Then for n;;:, 1
and°< x< 1,

n

B«(I, x) - BHlef, x) = L Pn+l, m(x) 'Y~m["j; IXn,m-j, IXn+ I. m' IXnm ;f],
m=1
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where

for 1<m<n.

Thus, the sequence {Bn(f,x)}(n» 1) is decreasing, nonincreasing, stationary,
nondecreasing, or increasing if! is convex, non-concave,po!ynomial, non-convex,
or concave o!order 1, respectively.

Theorem 1, for the ordinary Bernstein polynomials, was proved in [3].

Proof It was proved by Hausdorff, [7], (8), that

1
Pnm(x) - Pn+l,m(x) = ~ [Am+1Pn+l,m+l(X) - A",Pn+l,"'(x)],

I\n+l
Therefore,

n

BnCf,x) - Bn+1(f,x) = 2 [Pn",(X) - Pn+l,m(x)]!(anm)
m~O

n

+ 2 Pn+l,m(x)[f(anm) -!(an+1,m)]
m~O

- Pn+1,n+l(X)!O),
(since an+l,n+l = 1)

= i :m Pn+l,m(x)[f(an,m-l) - !(anm)]
m~1 n+l

n

+ 2 Pn+l,m(X)[!(anm) - /(an+l,m)],
m~1

(since >"0 = 0, ano = an+!, 0 = 0 and ann = 1)

= II +12, say.

Now,

and

so

Observing that

26
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if follows that

LEVIATAN

n

II +12 = .L Pn+l,m(X)y,7m[,\I;lXn,m-I,lXn+l,m,cxnm ;f].
m~1

This completes our proof.
We can establish now the following representation theorem.

THEOREM 2. Let Ao = 0. Then for each n>o I and each Xo E [0,1] there are
three distinct points ~1(n,xO)' ~zCn,xo), ~JCn,xo) such that for every function
f(x), continuous in [0,1],

Rlf, xo) = f(xo) - Blf, xo)
= Rlx2/\J, xo)[A I;~I(n, xo), ~zCn, xo), g3(n, xo);f].

Theorem 2, for the ordinary Bernstein polynomials, was proved in [3].

Proof Given no >0 1 and °« Xo « 1, we shall prove that Rno(f,xo) ¥- °for
every continuous function f(x), convex of order 1. Then our theorem will
follow by Popoviciu [13], Th. 5. Now, for such a function f(x) , the sequence
{BnCf,xo)} (n>o 1) is decreasing, by Theorem 1. Furthermore, by Theorem A,
Blf, xo) --+ f(xo). Therefore

Rno(f, xo) = f(xo) - Bno(f, xo) < 0.

This completes our proof.

Remark 1. In fact, Rn(f,xo) has degree of exactness 1 (see [13], §25), since
by (2.5), Rn(f,xo) vanishes for the functions l,xilt •

The following is an immediate consequence of Theorem 2.

COROLLARY 1. IfAo= °and thefunction g(x) = f(X l/llt ) is twice continuously
differentiable in (0, 1), then for each n >0 1 and each Xo E [0, 1] there exists°< g(n, xo) < 1 such that

Rlf, xo) = !RnCX2111
, xo) gl/W. (3.2)

For Al = 1, we have g(x) = f(x) and (3.2) was obtained in [3].
A representation of the remainder in the approximation of functions twice

continuously differentiable in [0,1] by generalized Bernstein polynomials in
the case Al = 1, which is much more precise than (3.2), follows immediately by
Remark 1 and by Popoviciu [13], (84):

THEOREM 3. Let Ao= °and Al = 1. Thenfor each n>o 1, each Xo E [0,1] and
every function f(x) , twice continuously differentiable in [0,1],

RnCf,xo) = J: RlePt,xo)fl/(t)dt,
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where

-I. ( ) = x - t + Ix - t I
'Pt X 2 .

Remark 2. Since 1>t(x) is non-concave of order 1, it follows by Theorem 1,
that R n(1)t,xo) < 0 for all 0 < t < 1. Also, Rn(1)t,xo) is continuous in 0 < t < 1
and, in fact, infinitely differentiable for t i= Xo and i= (Xnm, 0 < m < n. Thus,
applying the mean value theorem, it is possible to derive (3.2), in case A! = 1,
from Theorem 3.

Remark 3. Theorem 3 and Remark 2 were obtained in [2] by a long construc
tion. It must be added, however, that the construction in [2] allows a wider
class of Bernstein operators by assuming instead of (2.1) merely '\0 = 0. and
1 = Al < Ak for k> 1. Estimate of this remainder is given in [2] only for
sequences {Ai} satisfying a slight modification of (2.1), namely,

Theorem 3 and Remark 2, for the ordinary Bernstein polynomials, were
obtained by L. Arama [1] and by Stancu [14].

Similar results can be obtained for the generalized Bernstein power-series.
We merely state them here, leaving their proofs to the reader.

THEOREM 4. Let f(x) be continuous in [0,1]. Then for every m> 1 and every
x E (0,1],

ro

Mm(f, x) - Mm+i(f, x) = 2 qnm(X)y~-i, m[A!; Pnm, Pn+l, m+i, Pn, m+i ;j],
n~m+i

where Y;'-i,m is as in Theorem 1. Thus,for 0 < x < 1, the sequence {Mm(f,x)}
(m> 1) is decreasing, nonincreasing, stationary, nondecreasing, or increasing
if f is convex, non-concave, polynomial, non-convex, or concave of order 1,
respectively.

Theorem 4, for the ordinary Bernstein power-series, was proved in [11]

THEOREM 5. For each m > 1 and each Xo E [0,1] there are three distinct points'i(m, xo), 'im, xo) 'lm, xo) such that for every flmction f(x), continuous in
[0,1],

f!llm(f, x o) = f(xo) - Mm(f, xo) (3.4)

= f!llm(x 2A1 , Xo)[Ai ; 'i(m, x o), 'im, x o), '3(m, xo) ;fl.

Theorem 5, for the ordinary Bernstein power-series, was proved in [11].
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Remark 4. Like RnCf, xo), also ~m(f, xo) has degree of exactness 1, since, by
(2.6), ~m(f,xo) vanishes for the functions 1,x"l.

The following is an immediate consequence ofTheorem 5.

COROLLARY 2. Ifthefunction g(x) = f(x'/" 1) is twice continuously differentiable
in [0,1], then for each m> 1 and each Xo E [0,1] there exists °< ~(m,xo) < 1
such that

(3.5)

Again, a more precise representation can be obtained in case A, =1 for
functions twice continuously differentiable in [0,1]; it follows by Remark 4
and [13], (84).

THEOREM 6. Let A, = 1. Thenforeachm > 1, eachxo E [0,1] andeveryfunction
f(x), twice continuously differentiable in [0,1],

(3.6)

where rPt(x) is as in Theorem 3.

Remark 5. ~m(rPt'xo) has properties similar to those ofRn(rPt,xo), except that
~m(rPt'xo)is infinitely differentiable for t # Xo and # f3nm, n > m, ifO < Xo < 1.
If Xo = 0, then ~m(rPt, 0) == 0.

4. ESTIMATE OF THE REMAINDER

The following is needed in the sequel.

LEMMA 1. Let Ao = 0. Then there exists a constant C1 such that for all n > 1
and all Xo E [0,1],

0<-RnCx2"I,xo)<C, max {~exP[-Al·i l/Ai]}'
l~k~n ~k i=k

Proof This lemma is a slight modification of estimates given by Gelfond
[6], p. 417, and can be proved in the same way. It should be noted, however,
that Ge1fond's inequality (25),
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is incorrect. For example, it does not hold for the sequence (Xi = i 2/J• The above
inequality holds for sequences {(Xi} such that (Xi+ I - (Xi ;> a > O. One can prove
without difficulty that for every € > 0 there exists a K(€) such that

~ 1 n ( (X1)2 K(€) [ n]L..;Z TI 1--; <-;;- exp -(2(Xl - E)' 2: l/(Xs ,
k+ 1 s k+ 1 s k+ 1 k+ 1

and this inequality, with € = (Xl> is used in proving our lemma.

LEMMA 2. Let "\mo-I < 2"\I < "\'''0' Then there exists a constant C2 such that for
all m ;> ma and all Xo E [0, 1],

O ,-hi (2.\' ) C2<-U'l", x ,Xo <T'
m

Proof It follows by [9], (3.15), that for m ;> mo and 0 < Xo < 1,

2'\ ~ (2,.\1) ( 2,.\1)Xo '= L, q"m(XO) 1 - T ..... 1 - ~ .
n=m m l\n-1

Hence

P£m(X2
.\', xo) = nt q"m(XO) [(1- ~:I) ..... (1 - ~n~l) - ~~~,] .

Now, by (2.6), if 0 < Xo < 1, then

n=m

and modifying again Gelfand's estimates [6] as above, our lemma is proved
for 0 < Xo < 1. For Xo = 0, P£m(x2"',0) = O.

Denote

Pn = max {,I eXP[-"\I"~ l/"\i]} n = 1,2, ....
1 ~k ~n I\k l=k

(By (2.1), P" ~ 0 as n ~ 00.)
Our first estimate of the remainder is

(4.1)

THEOREM 7. Let ,1.0 = 0 and suppose that g(x) = f(x i
/"') is twice continuously

differentiable in [0,1]. Then

n= 1,2, ... ,

where C3 = -tCI maxo ';;x';; Ii g"(X)Iand C1 is taken from Lemma 1.
The proof follows immediately by (3.2) and Lemma 1. Similarly, we have
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THEOREM 8. Suppose that g(x) = f(xl/)IJ) is twice continuously differentiable
in [0,1]. Then

where C4 = !C2 maxo.;x';l!g"(x)1 and C2 is taken from Lemma 2.
The proof is immediate.
Other methods ofestimating the remainder, using the modulus ofcontinuity

of f(x) or of rex), if f is continuously differentiable, were developed by
Popoviciu and Lorentz (see [10], Th. 1.6.1 and Th. 1.6.2). Since, if Ao= 0, we
obtain by (2.5),

n = 1,2, ... ,

n= 1,2, ....

it follows by a proof similar to that of [10], Th. 1.6.1, that we have

THEOREM 9. Let >'0 = °and let wi8) denote the modulus of continuity of
g(x) = f(xl/ A!). Then

IRuef, x)1 .;;; Cswip~/2), n = 1,2, ....

Also by (2.6),

Mm((xA! - X8!)2, xo) = ®m(x2A" xo),

and also we have

THEOREM IO.Letwg{8) be as in Theorem 9. Then

I~m(f, x)1 .;;; C6 wg{>,;;;1/2),

Finally, the following result follows by a proof similar to that of [10],
Th.1.6.2.

THEOREM 11. Suppose that g(x) = f(X I
/
A!) is continuously differentiable in

[0,1] and let w(g', 8) be the modulus ofcontinuity ofg'.

(i) If >'0 = 0, then

IRu(f, x)1 .;;; C7 p~/2 w(g', p~/2),

(ii) For m > mo,

I~m(f, x)! .;;; Cs >,;;;1/2 w(g', A;;; 1/2).

For the ordinary Bernstein power-series, Theorems 10 and 11 (ii) were
proved in [11]. (See also [4].)
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